產品參數 | |
---|---|
產品價格 | 15.2--55/kg |
發貨期限 | 2 |
供貨總量 | 99999999 |
運費說明 | 另計 |
小起訂 | 10 |
質量等級 | 一級 |
是否廠家 | 代理商 |
產品材質 | 201.304 .316L 304L.2205.310S等 |
產品品牌 | 寶鋼,太鋼,張浦,宏旺,甬金等 |
產品規格 | 1000-1219 |
發貨城市 | 無錫 |
產品產地 | 寶鋼,太鋼,張浦,宏旺,甬金等 |
加工定制 | 接受定制 |
產品型號 | 0.3-100 |
可售賣地 | 無錫 |
產品重量 | kg |
外形尺寸 | 1000-2000 |
適用領域 | 工業,食品,化工, |
各種不銹鋼的耐腐蝕性能
304 是一種通用性的不銹鋼,它廣泛地用于制作要求良好綜合性能(耐腐蝕和成型性)的設備和機件。
301 不銹鋼在形變時呈現出明顯的加工硬化現象,被用于要求較高強度的各種場合。
302 不銹鋼實質上就是含碳量更高的304不銹鋼的變種,通過冷軋可使其獲得較高的強度。
302B 是一種含硅量較高的不銹鋼,它具有較高的抗高溫氧化性能。
303和303Se 是分別含有硫和硒的易切削不銹鋼,用于主要要求易切削和表而光浩度高的場合。303Se不銹鋼也用于制作需要熱鐓的機件,因為在這類條件下,這種不銹鋼具有良好的可熱加工性。
304L 是碳含量較低的304不銹鋼的變種,用于需要焊接的場合。較低的碳含量使得在靠近焊縫的熱影響區中所析出的碳化物減至少,而碳化物的析出可能導致不銹鋼在某些環境中產生晶間腐蝕(焊接侵蝕)。
304N 是一種含氮的不銹鋼,加氮是為了提高鋼的強度。
305和384 不銹鋼含有較高的鎳,其加工硬化率低,適用于對冷成型性要求高的各種場合。
308 不銹鋼用于制作焊條。
309、310、314及330 不銹鋼的鎳、鉻含量都比較高,為的是提高鋼在高溫下的抗氧化性能和蠕變強度。而30S5和310S乃是309和310不銹鋼的變種,所不同者只是碳含量較低,為的是使焊縫附近所析出的碳化物減至少。330不銹鋼有著特別高的抗滲碳能力和抗熱震性.
316和317 型不銹鋼含有鋁,因而在海洋和化學工業環境中的抗點腐蝕能力大大地優于304不銹鋼。其中,316型不銹鋼由變種包括低碳不銹鋼316L、含氮的高強度不銹鋼316N以及合硫量較高的易切削不銹鋼316F。
321、347及348 是分別以鈦,鈮加鉭、鈮穩定化的不銹鋼,適宜作高溫下使用的焊接構件。348是一種適用于核動力工業的不銹鋼,對鉭和鉆的合量有著一定的限制。
00Cr12Ni10AlTi鋼的焊接性能良好,不論是在退火狀態還是在時效條件下均易于焊接。可使用惰性氣體保護焊和手工電弧焊等焊接方法。焊接材料宜采用與母材相同的化學成分。不必焊前預熱和焊后退火。焊后進行480℃時效處理,可獲得與母材相近的強度和韌性。
此鋼易于熱加工,熱加工的溫度范圍為1038-1230℃。為了得到細化的晶粒和 機械性能,終加工溫度應限制在816-927℃范圍內, 在終加工溫度范圍內應盡可能加大變形量,至少應為20% 。加工后空冷到室溫即可。
00Cr12Ni10AlTi鋼在大氣中的耐蝕性相當于0Cr19Ni9和Cr17型鐵素體鋼, 在鹽霧試驗中,鋼的耐蝕性稍低于1Cr17而優于1Cr13。在沸騰20%H3PO4,60%醋酸,25%和65%HNO3中,其耐蝕稍好于1Cr13,但不如0Cr19Ni9和1Cr17。
χ相和Laves相
χ相主要出現在含鉬的不銹鋼中,是具有體心立方結構的金屬間化合物,每個晶胞內含有58個原子,代表的化學成分是Fe36Cr12Mo10。但是由于金屬原子的相互置換,其化學組成可在一定的范圍內變動。在奧氏體不銹鋼中,該相的實際成分多為(FeNi)36Cr18Mo4。χ相主要在晶界,非共格孿晶界和晶內的位錯處開始生成。晶內生成的χ相與奧氏體基體保持一定的位向關系。
Laves相(η相)是B2A型固定原子構成的金屬間化合物。在含鉬或鈮的奧氏體不銹鋼中形成的Laves相成分分別為Fe2Mo和Fe2Nb。該相具有六方結構,每個晶胞中含有12個原子。與碳化物,б相和χ相等相比,Laves相在鋼中生成較慢,生成量也較少,且主要是晶內沉淀,與奧氏體基體也保持一定的位向關系。為形成該相,對B,A原子的相對大小有嚴格的要求:兩者原子半徑的比值不得大于1.225。
影響χ相和Laves相沉淀的因素是相似的。鋼中合金元素有重要影響。鉬、硅和鈦會加速χ相和Laves相的形成,特別是鉬的作用更為明顯;鎳、碳和氮含量的提高對這兩種相的沉淀均有抑制作用。冷加工對這兩種中間相的沉淀速度和沉淀量有不太強的促進效果。
奧氏體不銹鋼中χ相和Laves相的沉淀,也像б相一樣,導致耐蝕性下降及塑性、韌性的降低。但是由于這些相的沉淀溫度與碳化物及б相的沉淀溫度大體上相重合,因而在實際時效過程中,單獨出現χ相或Laves相的情況是極少見的,這些相總是與碳化物、б相等相伴隨而出現,且往往是次要相和后生相。所以,這些相的形成對不銹鋼耐蝕性和力學性能的影響常常被作為主要相的碳化物或б相的作用所掩蓋。
2Cr13鋼冷塑性變形性能、深拉和深沖性以及切削加工性均尚好,它的熱加工溫度以850-1200℃為宜,隨后需砂冷或及時進行退火處理。它的熱處理工藝見表2-20。此鋼焊后硬化傾向大,易出現裂紋。若用Cr202Cr207等焊條焊接時,焊前需經250-350℃預熱,焊后需在700-730℃回火,若用奧107,奧207等焊條焊接,則可不進行焊后熱處理。
3Cr13鋼由于碳含量高,故冷變形性能較1Cr132Cr13鋼為差,但其熱加工并無困難,熱變形適宜溫度為850-1200℃,隨后需緩冷并及時退火。3Cr13鋼的軟化退火與淬火工藝與1Cr132Cr13相同,但回火溫度較低,一般為200-300℃。由于3Cr13鋼可焊性差,一般情況下它不用于焊接。
4Cr13鋼的熱加工溫度與1Cr13,2Cr13,3Cr13相同。但其冷加工性能較3Cr13更差。熱處理時退火溫度為750-800℃,隨后爐冷;淬火溫度為1050-1100℃,然后油冷;回火工藝與3Cr13鋼相同。此鋼的可焊性很差,一般不用于焊接。